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ASYMMETRIC  NONLINEAR DYNAMIC RESPONSE 

AND  BUCKLING OF SHALLOW SPHERICAL SHELLS 

by Atis A. Liepins 
Dynatech Corporation 

SUMMARY 

A numerical method  and computer  program are developed for the com- 
putation of the  large deflection  dynamic  response of simply  supported  shallow  spherical 
shells  subjected to a class of spatially  asymmetric and timewise  step  loadings. The 
numerical method employs two dimensional  spatial  finite  differences,  timewise  finite 
differences  together  with Houbolt's method, and solution by Newton's procedure to- 
gether with an  extension of Potters method. Response  histories and asymmetric 
dynamic  buckling loads  for  several  geometries and load durations a re  presented. 
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INTRODUCTION 

Thin shell components  have found wide  application  in  spacecraft  struc- 
tures. For example,  the Apollo command  module aft  heat  shield back-up struc- 

ture is a thin  spherical  shell.  The  behavior of shell  structures under  impact  loads 
is of importance  in  the  design of such  structures to withstand  water landing loads. 
Of special  interest is the  response and instability of thin spherical  shells  subjected 

to time dependent spatially  asymmetric  loadings. 

The literature on the  numerical  calculationof  large  deflection dynamic 
response and instability of thin  shallow  spherical  shells is sparse. A recent  re- 

view of the  literature can be found in Reference 1. Al l  studies  reviewed in Refer- 

ence 1 a r e  limited  to  symmetric  response. TO the  author's knowledge, reports on 

the  asymmetric  nonlinear  dynamic  response of shells have not appeared in the  lit- 

erature. 

The purpose of the present  analysis is to  develop a numerical method and 

computer  program for the  calculation of the  large  deflection dynamic response of 
simply  supported shallow spherical  shells  subjected  to  a  class of spatially  asym- 
metric and timewise  step  loadings. The program is then used  to  calculate  asym- 

metric dynamic buckling loads for  a few geometries and load durations. 
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NOMENCLATURE 

base  radius of shell 

thickness of shell 

nondimens  ional pres  sure 

pressure 

classical buckling pressure  for  complete  sphere 

radial  coordinate 

time 

nondimensional normal  displacement 

nondimensional radial  coordinate 

~ h ~ / 1 2  (1 - v2) 

Young's modulus 

stress function 

initial height of shell  at  the pole 

unit step function 

critical  impulse 

number of finite  difference  stations on a meridian 

M,' M , M stress couples 
8 r e  

N number of meridians less one  in  the  finite  difference net 

N r y  Ney Nre stress  resultants 

R radius of curvature 

T  kinetic  energy 

U meridional  displacement 
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V circumferential  displacement 

V volume of deformation 
- 

- 
vD volume  difference 

W normal  displacement 

K l - 3  “e, “e 
h 

V 

P 

7 

7* 

t/ 

A x  

A 6  

Ar 

measure of asymmetry of load 

convergence  tolerance 

membrane  strains 

location of middle surface above base  plane 

static load  increment  reduction  factor 

circumferential  coordinate 

bending strains 

geometry  parameter 

Poisson’s  ratio 

materia1  density 

nondimensional  time 

duration of load 

nondimensional stress function 

meridional  finite  difference  spacing 

circumferential  finite  difference  spacing 

timewise  finite  difference  spacing 
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Matrices 

AL 

*NL 

AD 

FL 

F~~ 

FD 

linear  static coefficient matrix 

nonlinear  static  coefficient  matrix 

dynamic  coefficient  matrix 

load  column matrix 

pseudo  load  column  matrix 

dynamic  column  matrix 

Z column matrix of all  mesh  variables 

Indices 

k 

m 

n 

r 

time  station 

meridional  station 

circumferential  station 

iteration in Newton's procedure 
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GOVERNING  EQUATIONS 

The  shell is assumed  to  be 1) thin,  that  is,  the  ratio of wall thickness 
to  radius of curvature is much less than  unity; 2) shallow,  the  ratio of the r ise  

at  the pole  to  the  base  diameter is less than  about 1/8; 3) elastic; 4) undergoing 
small  strains  despite  large  deflections; and 5 )  imperfection  free.  The  geometry 
of the  shell and notation are shown in Figure 1. 

The load is distributed  over  the  surface of the  shell  asymmetrically, con- 

sisting of uniform and linearly  varying  parts,  as shown in Figure 1. Timewise 
the load is applied  suddenly,  held  with  constant  intensity  for a finite  duration of 
time, and removed  suddenly. 

The analysis is based upon the  shallow  shell  equations of Marguerre [ 23. 

In terms of nondimensional  variables  these are:  

v 4 - V 2 $  = ( - $ 1  1 +- 1 .. $)W"+(-$W' 1 + - 1 w )  .- $ ' I  
X 2 2 

X X 

2 4 1 1 .. ) w" -(;;.I - - 1 W)2 -v  w - v  $ = (,wf + - w  2 
X 

2 
X 

2 H  2 
h4 = 48 ( 1 - v  )(x) 

h 
a x = - r  
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32  EH3h 
2 4  90 - 

- 
h a  

qo is the  classical buckling pressure  for a complete  sphere [3], and H (7) is the 
unit step function of finite  duration which vanishes  for T < 0, T > T * and equals 
unity for o 5 *. 

The stress function - stress  relations  are 

1 
Nr r 2 

= -Ff + - 1 ;  

r 

. . ?  
Nre = - (f F) . 

The stress - strain  relations  are 

E =  
2(1+v) 

r e  Eh r e  
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The strain - displacement  relations Trre 

= U' + - w' + $w1)2  r 1 
'r R 

1 1 '  1 - 2  
E = - u  + - v + 5 ( i w )  e r r 

E = - u  - - V + V ' +  RW + - W W '  1 '  1 1 '  1 '  
re r r r 

= - (+)I 1 . Kre 

In equations (3) - (5) , prime denotes  differentiation  with  respect  to r. 

At T = O  the  shell is at rest: 

The  edge of the shell at x = h is simply  supported: 

w = 0 ;  w = o  

u = 0 ;  A + ' '  - v?)' - ? ) = o  v .. 

v = 0 ;  A l p  - ( l - v ) x $ ' + ( 2 + v ) ~ ? ) ' - - $  1 +Awl+  z ( w )  =o 
1 .. 3 .. 1 ' 2  

h2 

Mr = 0 ; Awl' + vw'= 0. (7) 

Since  the structure and  loading are  symmetric about the  diameter 

8 = 0, rand deformations with such  symmetry a re  assumed, we consider only 

one half of the  shell  corresponding  to 0 5 8 5 R. The conditions on the  diameter 

of symmetry are: 
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At the  pole  the stress  resultants and bending moments  must  remain  finite,  there 
must  be no transverse  shear, and N; = No. These  requirements are satisfied if 

w = - $ =  0 

(w f w>’= ($ + Y)’ = 0 

at the pole. 

Since  the  governing  equations (1) , (2), the boundary conditions (7), (8) 

and the  pole conditions (9) do not  involve $ but only its derivatives, q5 is not uniquely 
determined. In fact, 

w = o  2 

satisfy (l), (2), (7), (8), (9) at  all times and cause no stress. If the nonlinear  terms 
in the  governing  equations ( l ) ,  (2) and the boundary conditions (7) are neglected,  then 
the s t ress  function  solution  may  be written as 

The two functions C1 , C2 in (11) may be determined by specifying  the stress function 
to  be zero  at two points on the  shell 

Therefore  for this particular loading and linear  deformation it can be shqwn that 

(12) implies 
J l ( h , e , T )  = 0 . (13) 

It is assumed  that  the  application of (13) to  the  nonlinear equations (l), (2) and 
boundary conditions (7) results in a negligibly small  error. 



1 

DERIVATION AND SOLUTION OF FINITE DIFFERENCE EQUATIONS 

The  solution to . ( l )  and (2) is obtained by finite  differences in time and 

two dimensional  finite  differences in space.  Since an implicit  difference method 
is used to march out the  solution  in  time,  nonlinear  simultaneous  equations have 

to  be  solved at  each  time  step.  These  equations are solved by successive  lineariza- 

tions  using Newton's procedure [4 ] .  The Newton procedure  computes  successive 

corrections  to  the  starting  solution  until  the  desired  accuracy is obtained. Then 
the  procedure is repeated  at  subsequent  time  steps  until  the  solution is marched 

out to the  desired  time. Thus the  most  frequent  step is the computation of the 
corrections in Newton's iteration  procedure. The basic  iteration  equationis de- 

rived below. 

The replacement of the  derivatives in (1) and (2) by finite  difference 
approximations is a common procedure  for  deriving  finite  difference  analogues 
of (1) and (2). For the  linear  version of (1) and (2) this  procedure will  not always 

lead  to  finite  difference  equations with  a symmetric  matrix of coefficients, al- 
though linear  structural behavior  entitles  us to a symmetric  matrix.  Another 
way to obtain finite  difference  equations is to derive  them  from  a  minimumprin- 

ciple as was done in References 5, 6 ,  and 7. In the  present  case  the  equilibrium 
equation (1) may be obtained from  Hamilton's  Principle and the  compatibility 

equation (2) may be obtained from  the  Principle of Minimum Complementary 
Energy. However, the  use of two minimum  principles  for  the  present  purpose 

is awkward. Instead, we derive  finite  difference  analogues of (1) and (2) from 

the conditions for the  stationary  value of a  definite  integral 

where  T is the  kinetic  energy  associated with the  transverse  displacement of the 

shell 

T 1 $" f A ; '  x  dxde 
2 o  0 
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Although the  integral (14) lacks  physical  meaning, it provides  the  basis  for  an  orderly 
derivation of the  finite  difference  analogues of (1) and (2). 

Condition (14) is satisfied if w and $ are  solutions of the following dif- 
ferential  equations, 

" i = 1 , 2  

where Z1 = w, and Z2 = $. Equation (17) implies  the governing  equations (1) and 

(2) , the  boundary  conditions (7) (8) and the  pole conditions (9). If condition (13) 
is imposed,  the  underlined  terms  in (16) drop  out,  the conditions for  the  relative 
extremum of (14) are still such  that  equations ( l ) ,  (2) , (7), (8), (9) must be sat- 
isfied, and in  addition $ is determined uniquely. Thus the  determination of the 
relative  extremum of F without the  underlined  terms  in (16) implies  the  solution 
of (1) and (2) subject to (6) - (9). 

For the  approximation of the  integrals T and I we impose on the sur- 
face of the  shell a net  consisting of 

such that 
AX = A 

x = m h x  m 
en = nAe 

M parallels and N + l  meridians equally spaced 

m = 0 , 1 , 2 , .  . .M 
n = 0 , 1 , 2 , .  . . N  

The  edge of the  shell  appears halfway between two parallels. 
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Let 

and assume  that  these  integrands a r e  constant  over  the  elemental areas and length 

shown in Figure 2. Also,  assume  that w is constant  over  the  elemental area  cor- 

responding to il. Then summing up all the  elemental  areas we  have  approximately 

* 

m=l  n=l 
M-1 

+ [g (i2,m+1/2,0  +i2,m+1/2,N 2 , m+1/2, n ] (m +;) Ax2A e 
m=O n=l 

N-1 

+ [ (i2,M+1/2, 0 + i2, M+1/2, N) '+x i2, M+1/2, n ] (M + $)Ax2A 8 
n=l 

M N-1 

m=l n=O 

12 



.M-1 N-1 

i4,  m+1/2,  n+l/2 (m + i) Ax & 
2 

m=O  n=O 
N - l  

[ k M+1/2,0 + M+1/2,N) +x i5, M+1/2,n ] A , .  (2.1) 
n=l 

Letting Z stand  for  either w or   $we can  express  the  derivatives in (21) in 
terms of the  displacements and stress functions at the nodes of the  finite  difference 
net as follows 

- 1 " 
'L+1/2,n AX ('m+l,n - z  m,n ) 

'm,n+1/2 Ae ('m,n+l m,n 

(0 ')m,n Ax 2 (Zm+~,n-2zm,n+Zm-1,n ) 

1 = -  - z  I 

2 - 1 -- 

-I- 
1 

2xmAx ('m+l, n 'm-1, n ) 
- 

+ 1 
x 2 A82 ('m, n+l m, n + 'm, n-1 1 - 2 2  

m 

(t  Z)' - - 1 (wl,n+l- Wl,n+W1,N-l-n -W 1,N-n 1 
1 /2, n+l/2 2 Ax2& 

1 
'1 /2, n+1/2 = - (2Z0 + z 4 1, n + ' l,n+l ) 

1 
'm+1/2, n+1/2 4 ('m,n + 'm+l,n + 'm,n+l+  'm+l,n+l ) m r l .  

- " 

13 



" - .  

I 

At the pole 

( V  Z)o = Zh = constant and 2 

N-1 

(v 2 ')O = " 1 2 [. '0-x 1 ( Z 1 , 0 + Z 1 , . J + 2 ~  'I,,)] (23) 
Ax n=l 

At  the  edge of the  shell 
1 

'M+1/2,n = - 2 (Z M,n + 'M+l,n ) = 0  

and on the  diameter of symmetry  (n = 0, N) 

Z - 1 - Z  ) =  0. (25) " 

m , n  2AO ('m, n+l  m, n-1 

Substitution of (22) - (25)  into (21) yields  an  expression  consisting of a linear  part 

IF,  quadratic  part  IL, and  cubic- part  INL,  in w and z) at node  points  inside  the 
boundary. Thus 

I = I F + I  + L INL. (26) 

Next  we approximate  the  acceleration  term in (18) by Houbolt 's four point 

unconditionally stable backwards  difference  formula [SI , [ 91 

** 1 
W = "3-(2w - 5wm, n,  k-l+4wm,  n, k-2 - wm, n, k-3) k 2 3  (27) 

m ,n ,k  AT m,  n,  k 

** 2 X 
W - " - 2  w ) - 4 p ( l - a  7 m cos e 1 2 (Wm,n,2 m,n, 1 m,n, AT n 

** 6 X 
W 

m , n 9 1  A$ m , n Y 1  

= -  W - 8 p  (1 -CYT cos en) 

where  the  time T is represented  at  discrete points by 

T~ = kAT , 

14 



Substitution of (20), (26) and (27) into (17) results in a set of nonlinear  algebraic 

equations  for Z To solve  these  equations by successive  linearizations 

using Newton's procedure [4], expand (17) in Taylor series about the rth iterate 
m,  n, k' 

and keep only the first two terms 
1 

where 6Zr  = z r+l r 
j j j 

- z  

and Zi  includes all mesh  variables. Then  with 

alF 

az: 
" - - FL 

aIL 

az f 
= ALZ' 

" a l ~ ~  
az T 

a 'IF 

azFazr j 

a ' I ~  

azFazr 
j 

a INL 
azr azr = A~~ 

j 

- F~~ 

= o  

3 

= AL 

2 



and the  proper  grouping  into AD and FD of terms  resulting  from Houbolt's formula, 
(29) gives  the  basic  iteration  formula  at  the kth time  station  as 

[ AL + ANL + AD] .r3Z; .= FL - FNL - FD; - [ AL + AD] Zk r k r 3  

[ A L  + ANL -I- AD] 6 Z i  = 2FL - FNL - F - [AL+AD] Z2 r k = 2 (32) D, 2 

[ A L + A N L + 3 A D ] 6 Z 1 =  r 3 F L - F N L - [ A L + A D ]  Z1 r k = l .  

Each of equations (32) may be written  as 

A6Z = F 

where 6Z and Z are  ordered  identically  as follows: 

z =  z O  

z1 

'm 
I 

zM 

The  equations are  ordered  in the same way as  the unknowns with w and I )  cor- 

responding to the  equilibrium  equation (1) and the  compatibility  equation (2), 

respectively. 

(33) 

The system (33) is banded. It may be partitioned and written  in  the 

block  lffive-diagonal.ll form: 

16 



Co6Zo + D06Z1 + E06Z2 = Fo 

T Do 6Zo + C16Zl + D16Z2 -I- E16Z3 = F1 

T T E06Z0 + D16Z1 + C 6Z + D 6Z + E26Z4 = F2 2 2  2 3  

T 
Em-26Zm-2 + ",-1'Zm-1 + Cm6Zm + Dm6Zm+l +Em6Zm+2 

- 
- Fm 

E = E  rn LY 

The Of 'L, my DL, m' EL, m' L, m' 'NL, m' DNL, m y  FNLy my  'D, my  F 

FD, m matrices  are given in the Appendix. 

The  system of linear equations (35) is solved  recursively using an  extension 
of Potter's method [ IO]. 

17 



Expressions for the  matrices X and Qm may  be  obtained by substituting  into 

(35). They are: 
m'  Ym' 

X. = Co Do -1 

18 



except YM-l = 0 

where 

'1 = [ C1 - DT X0]-' 

'2 

m =2,3,. . . M  . 

19 



COMPUTATION  PROCEDURE 

The characteristic  deflection of the  shell v, referred to as volume of deforma- 

tion is related to the  deflection as follows 

- l2=l A W r d r  dB 
v =  l2'l A Sr dr  do 

M N-1 

The asymmetry of the  deflection is measured by the  difference in  volume of deforma- 
tion corresponding to the highly loaded region 0 5 r 5 a ,  n/2 I e 5 n, and lightly 
loaded region 0 5 r 5 a,  0 5 e 5 7r/2 

M N-1  N/2-1 

The  computation procedure  is  summarized below. 

1. Set up the  linear  coefficient  matrix A the  dynamic  matrix A and L' D' 
the load matrix FL. 

2. Set all mesh  variables 

3. Compute the  nonlinear 

Z to zero. 

coefficient matrix ANL, the pseudo  load  ma- 

trices F and FD. NL 

4. Solve the  first of equations (32). 

5 .  Add the  increment 6 Z to  the  solution Z , 

6. Repeat  Steps 3 - 5 until  soiution  has  converged.  The  criterion 
for convergence is 

20 



where HZll = d r  and E is a specified  constant. 

This yields  the  solution at the first time  station. 
m,n m,n  

7. Extrapolate a starting solution  for  the next time  station by 

applying 
z = 3 2  - 3 z k - 2   + Z k - 3  k k- 1 -1 (42) (k 2 2,  Z o  = Z = 0) 

at  every  spatial  finite  difference  mesh point. 

8. Repeat  Steps 3 - 6,  except at Step 4 solve  the  second of 
equations ( 3 2 ) .  This  yields  the  solution at  the second time 
station. 

9. To obtain the  solution at the kth (k 3 3) time  station,  repeat 
Steps 7,  and 3 - 6, except  in  Step 4 solve  the  third of equations 

(32) * 

10. Terminate  the computation when solution is carried out to a 
specified  time. 

If at any time  station  the  solution  has not converged in a  specified  number of itera- 
tions,  the  iteration is stopped.  The  solution at the  previous  time  station is taken 
for a starting  iterate and Steps 3 - 6 a re  repeated. If convergence is achieved, 
Step 9 is repeated. Lf convergence is not  achieved  the  computation is terminated. 

The  computation of the  static load  deflection  curve and  the determination 
of the  static buckling load is a variant of the above  computation procedure.  Here 
we increment  the  load  instead of the  time. The applicable equations  can  be ob- 

tained from ( 3 2 )  by deleting  the  dynamic  terms.  The result is 

[AL + ANL] 62' = FL - FNL - ALZ . r 
(43) 

A typical static load  deflection  curve is shown in  Figure 3 .  The  volume 
of deformation 7 increases with p.  When pcr is reached,  the  shell  buckles and 

I 



- 
V jumps  from A to C. The AB branch of the load-deflection  curve is unstable 

because the  deformation  increases with decreasing  pressure. 

The  computation of the  static  load  deflection  curve is summarized below. 

1. 

2. 

3. 

4. 

5.  

6 .  

7. 

8. 

9. 

10. 

11. 

12. 

Set up the  linear  coefficient  matrix 

Set  the load and all  mesh  variables 

AL' 

Z to zero. 

Increase  the load by Ap and compute  the  load  matrix. 

Compute the  nonlinear  coefficient matrix A NL' 

Solve  equation (43) and add the  increment 6 Z to  the  solution Z , 

Repeat  Steps 4 and 5 until  the  solution  converges  according  to (41). 

Repeat  Steps 3 - 6 until at some load level  the  solution  fails to 
converge in a specified  number of iterations. 

Reduce the  load by Ap and the  load  increment  to  qAp,  where 

q <  1. 

Repeat  Steps 3 - 7 with Ap replaced by qAp. 

Reduce  the  load by q Ap and the  initial load increment  to q2 Ap. 

Repeat  Steps 3 - 7 

When the  solution 

load level is near 

with Ap replaced by 77 Ap. 2 

fails  to  converge, it is assumed that the 

the  relative maximum of the load-deflection 
curve. An attempt is then  made  to  compute two points on the 

unstable  branch of the  load-deflection  curve.  The  load is re- 
duced by 27 Ap and the  starting iterate is taken to be 2 

22 



where Z is the  last converged  solution. If the  solution con- 
verges,  the load is incremented by q Ap. I€ the  solution fails 
to  converge,  the computation is stopped. 

Q 2 

The asymmetric  linear  static  deformation is governed by 

A Z = FL. L (45) 

It can be computed by that  section of the dynamic computer  program which solves 
linear  simultaneous  equations. 
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VALIDATION OF NUMERICAL METHOD 

The validity of the  numerical method is partly  demonstrated by the results 
of the following special  cases of the  deformation of a simply  supported  shallow 
spherical  shell: 

1. Asymmetric  linear  static  deformation, which provides a 
check on the two dimensional  finite  difference  equations 
and the method of solving  them; 

2 .  Symmetric  nonlinear  static  deformation and buckling, 
checking  the  application of Newton's method; and 

3 .  Symmetric  nonlinear dynamic deformation and buckling, 

checking Houbolt's method. 

4. Asymmetric  nonlinear  static  deformation and buckling. 

The results of these  computations a r e  compared with results that a r e  published 

or obtained  with other  computer  programs. 

Asymmetric  Linear  Static  Deformation 

The  asymmetric  linear  static  deformation of a shell  with h = 8, p = 0.5, 

v = 0 . 3  and a = 1 . 0  was computed. A finite  difference  net with M = 25 and N = 4  

was used. The deflections a re  compared in Figure 4 with  those obtained  with 

100 finite  difference  stations  from a published program [11]. The program [ 111 
is based on the  analysis of Reference 12. The  example  solution was computed 
with  a Fortran  program on the IBM 360/75 in  approximately  seven  seconds. Thus 

the  present  analysis  leads  to  an  accurate and efficient  solution of the  asymmetric 
linear  static  problem. 

Axisymmetric Nonlinear Static  Deformation and Buckling 

The axisymmetric buckling  load for  shells with h = 4 and 8 subjected  to 

uniform  pressure (cr = 0) was computed. In both cases u = 0 . 3 ,  initial Ap=O. 05, 
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M = 15, N = 4, and 7 iterations  were  permitted  to  achieve a converged  solution at 
a given  load  level. For h = 4 case, ,E  = 0.001 and q = 0.1; for A = 8 case, ~=0.01, 
q = 0.2. The critical  pressures obtained in the  present  analysis  are  compared  to 
those  obtained by Weinitschke [13] and Schaeffer [ 71 below. 

h 4 8 - - - 
p present  analysis cr 0.6615  0.796 

Pcr Weinitschke [13]  0.660  0.791 

Pcr Schaeffer [ 71 0.646  0.857 

The present buckling pressures  are in  very good agreement with those obtained by 
Weinitschke [13] and  in  reasonably good agreement with those obtained by Schaeffer 
[ 71. The load  deflection  curves and the  deformed  shapes  near  the buckling pressures 
a r e  shown in  Figures 5 and 6. 

These  calculations do not consider  possible  bifurcation  from  the  symmetric 
state of deformation.  Weinitschke [ 141 has shown that bifurcation  occurs  for A > 4. 

Each  load-deflection  curve in F i v e  5 was  computed with a Fortran  program 
on the CDC 6600 in approximately 2.5 minutes. 

Axisymmetric  Nonlinear Dynamic Response and  Buckling 

The  dynamic  buckling  load for  shells with A = 5 subjected to uniform  pressure 
of infinite  duration  was computed. Poisson's  ratio v = 0.3, E = 0.01 and the  finite 

difference  net was such  that M = 15, N = 4, and AT = 0.1. 

An ensemble of responses  for  various load amplitudes is shown in  Figure 7. 
The  maxima of these  responses  as a  function of the load  amplitude are presented 
in Figure 8. The  load at which the  response of the  structure changes  abruptly  from 
??moderate  to  severe",  from  sub-critical  to  super-critical, is taken to be the dy- 
namic buckling  load [15] , Thus , for  this  case  pcr = 0.57 approximately. The  de- 
flected  shapes  at vmax for  p = 0.55 and  p = 0.6 are shown in  Figure 9. Note that 
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at  the  super-critical load  p = 0.60, the  deflection  at  .the  pole is more than  twice 

the  initial rise H and the  shell is in  the  ffinvertedf'  or inside-out  position  with all 
points  on  the  shell below the  base  plane. At the  sub-critical  load  p = 0.55 the 

shell has deformed only moderately. 

The present  results  are  in good agreement  with  those  obtained  from  an 

analysis and program  for  the  wisymmetric  nonlinear  dynamic  response of shells 

of revolution developed at  the NASA Langley Research  Center and described  in 
Reference 16. (See Figure 7. ) The  Langley results  are  for AT = 0.25 and 25 

finite  difference  stations  along  a  meridian. 

The present pcr = 0.57 for  a  simply  supported  shell is higher than the  pcr 

= 0 . 4 9  computed by H u n g  [ 11 for a  clamped  shell.  The  ratio of dynamic  to static 

buckling loads  for  shells with A = 5 and  clamped  edge is 0.78 [l] [I?].  For simply 
supported  shells,  the  ratio is 0. 76 based on symmetric  static buckling and 0.91  

based on the  static load at  bifurcation. 

Asymmetric  Nonlinear  Static  Deformation and Buckling 

Static buckling  loads for asymmetrically (a! = 1) loaded shells  with h = 4 
and 8 were computed. For A = 4, a =  1, Y = 0.3, Ap = 0.05 ,  q = 0.2, E = 0.01, 

the  finite  difference  nets  used,  the  maximum  number of iterations  permitted  at 

each  load  level, and the  critical  pressures  are given below: 

M 5 10 15  15 

N 4 4 4 6 

7 7 7 Iterations 
(maximum) 

Pcr 0.316 0.328  0.332 0.328. 

The difference  in  the  last  three  critical  pressures is about 1% indicating con- 

vergence of the finite difference  net. The critical  pressure is taken to be 0.328. 
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For A = 8, (Y = 1 ,  IJ = 0.3,  the  parameters of the  problem and the critical 
pressures are given below: 

M 

N 
5 15 15  15 
4  4 6 8 

Iterations 
(maximum$ 7 7 10 10 

AP 0.05 0. 05 0.025 0.05 

77 0 .1  0.1 0.2 0.1 

E 0.001 0.01 0.001 0.0001 

'cr 0.3245  0.378  0.411*  0.425*. 

In the  computation of the  critical  pressures  marked by an  asterisk points on the 
unstable  portion of the  load  deflection  curve  were  not  obtained.  Since  in  these 
cases  the failure of Newton's procedure  to  converge may  be  due to causes  other 
than  the  non-existence of an  adjacent  equilibrium  position on the stable branch 
of the  load-deflection  curve [ 181 , these buckling pressures should be viewed 
with  caution. 

The load-deflection curves for h = 4 and 8  and the  deflections of these  shells 
are shown in  Figures 10-15. The slope of the A = 4 load  deflection  curve  decreases 
monotonically  and  the  deflections at  the buckling pressure of p = 0.328  have es- 
sentially  the  same  character as the  load,  that is, they  contain  mostly a uni€orm  part 
and a cos 8 part. The  slope of the h = 8  load-deflection curve,  however,  decreases 
up to p = 0.35,  increases  slightly  from  0.35 to 0.40 and  then decreases  again.  The 
reversal of the change  in  slope is accompanied by drastic changes  in  the  deflected 
shape of the  shell as shown  by Figures 12-15. A t  p = 0.30  the  deflected  shape con- 
tains  mostly a uniform  part  and a cos 8 part. A t  p = 0.35  the  deflected  shape has a 
pronounced  waviness  in  the 8 direction  near 8 = T as shown in  Figure  15. This is a 
plot of the  deflections  along  the  parallel r/a = 0.71 at which the  deflection  peaks  in 
Figures 12-14 occur. A t  pcr = 0.425  the  shell has returned  to a simpler  shape than 
that at p = 0.35 but containing  contributions  from  components  higher  than  cos 8 .  The 
deflected  shape at p = 0.35  appears  to  be  associated  with a local  instability of the 
shell.  It  should be further  investigated.  Probably a finite difference  net having 
N > 8 and  smaller load  increments  should be  used. 

cr  
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Asymmetric  critical  pressures  for h = 4 and 8, obtained  with  the  program 

described in Reference 19  using 25 stations on the  meridian and 8 terms in the 
Fourier expansion of the  solution in the  circumferential  direction,  are 0.336 and 

0.304 respectively. Thus for h = 4 the  critical  pressure  for  this  analysis  agrees 
very  well with  that  obtained  with the  programof  Reference 19. For A = 8, the criti- 

cal  pressure obtained  with the  program of Reference 19, although  much lower than 

that of the  present  analysis is close  to  the  pressureassociated with local  instability. 

The buckling pressures  for  asymmetrically loaded shells  with h = 4 and 8 

a r e  approximately 50% of those.  loaded axisymmetrically, although the  total  loads 
from  the  asymmetric and uniform  loadings of equal intensity are the  same.  The 

membrane  stresses at pcr from  the  asymmetric load are   a lso much  lower than 
those  from  uniform  pressure as shown in Figure 16. The stress  resultants in 

Figure 16 a re  scaled with respect to  the  classical buckling stress:  

The ratio Ne/Nr, however, is approximately  the  same  for both uniformly  and 

asymmetrically loaded shells. 
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ASYMMETRIC NONLINEAR DYNAMIC DEFORMATION AND BUCKLING 

Asymmetric  dynamic buckling loads  for  shells with A = 4,6, and 8 subjected 
to an asymmetric loading  with a = 1 were computed. The problem  parameters are 
listed below: 

A 4 6 8 
M 15 15  15 
N 4 4 8 

AT 0.1 0 .1  0.05 

E 0 . 0 1  0.01 0 .01  

The  spatial  finite  difference  nets  for h = 4 and 8 a re  those which gave  accurate  re- 
sults  in  the  calculatjon of asymmetric  static buckling loads.  The  time  increment 
was determined by trial and error.   For h = 4, p = 0.4 and T * = 00 responses  were 
computed  with AT = 0.1 and 0 . 5 .  These  differed by less than 10% and,  therefore, 
AT = 0.1 was used in all calculations  with A = 4 and 6. For h = 8, p = 0 .2 ,  T *=  0~ 
responses  were computed  with AT = 0 .2 ,  0.1, 0 . 0 5 ,  and 0.025. The  selected  time 
increment AT = 0.05 represents a compromise between accuracy and computing 
time. 

Ensembles of response  histories  for A = 4 and load durations of T * = 1 , 5  

and are displayed  in Figure 17. The dynamic  load  deflection  curves  for  these 
cases are shown in Figure 18. For T *  = 5 and 00 the  transition  from  sub-critical 
to  super-critical  response  occurs  in a narrow  load  range and thus the  dynamic 
buckling  load is sharply defined. For T * = 1 , Vmax increases  gradually with  the 
load  intensity  p. In this  case pc, is associated  with  the  inflection point of the  load 
deflection  curve, as proposed in Reference 20. Note also  that  the  time  required 
to  reach Vm, increases as p approaches pcr from below and then decreases as 
p increases above  p For T * = 1 the p = 1 . 0  response  zchieves its maximum 
later thanall  other  presented.  This  places pc, between 0.9 and 1 . 0  which is in 
agreement  with  the  load  at  the  inflection point of the  load  deflection  curve.  Thus 
the  time  to  reach vmax can assist  in  the  determination of pcr. 

. -  

- 

cr '  
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The variation of pcr and  the  critical  impulse, Icr = p,, T *, with. T * 
and a comparison of static and  dynamic  buckling  loads is shown in  Figure 20. 

The  .lowest  dynamic  load,  occurring when T * = 00 , is 84% of the  static pcr. 

Also  presented in Figure 18 a r e  ( T D ) ~ ~  - p  curves. V histories  for 

T * = 03 a r e  displayed  in  Figure 19. For  this  case, (VD)ma increases  sharply 
at the  same  load  as v, thus  providing an alternate  criterion  for dynamic  buckling. 
Based  on v,, .histories,  the  critical  pressures  for T * = 1 and 5 a r e  0.65 and 0 .30  

respectively. Thus the vD criterion  leads  to  conservative buckling loads.  For 
the  present  purpose, dynamic  buckling  loads a re  determined on the  basis of v. 

- 
D 

The cross  at  the end of several  response  curves  in  Figure 17 indicates that 
Newton's procedure  failed to converge  at  that point.  Convergence  failure is dis- 

cussed  at the end of this  section. 

Ensembles of response  histories h = 6, T * = 5 and 00 a re  displayed  in 

Figure 21. The failure of Newton's procedure  to  converge  does not  allow the 

construction of the vma - p  curve  for T * = -. The  dynamic  buckling  load in 
this  case is determined  from  histories shown in  Figure 22. The  dynamic 

load-deflection  curves a r e  shown in  Figure 23. 
D 

As  in  the A = 4, f *  = - case,  the  transition  from  sub-critical to super- 

critical  response  for A = 6, T * = - occurs  in  a  narrow load range and the  dynamic 

buckling  load is well  defined. In the T * = 5 case  the  transition is more complex 
and the  striking  feature of the load-deflection curve is the  presence of two inflec- 

tion points. At the  second  inflection  point,  associated with  p = 0.425, the  shell 

has deformed  to  the  inside out  position. At the first inflection  point,  p = 0.395, 

severe  deformation has occurred (v = 0.7) and in  addition V,, increases  rapidly 

as shown in  Figure 23. Thus the  load,  p = 0.395, associated  with  the first in- 

flection point of the  load-deflection  curve is considered as  the dynamic  buckling 

load. 

An ensemble of response  histories  for A = 8, T * = 5 is shown in  Figure 24. 

The  plot  shows severe  interference  from convergence failures, but the  dynamic 

buckling  load  can still be located  near  p = 0.39. The significant  feature of the 
p = 0.39 curve is the  slow  development of the  response which has  not  yet  reached 

a maximum at  T = 30. 
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A summary of buckling  loads for  simply  supported shallow spherical  shells 
is presented  in  Figure 25. The figure  includes  the  static buckling  loads  due  to 
uniform pressure obtained by Weinitschke [13 ] [ 141 and Schaeffer [ 71 and the  static 
and  dynamic  buckling  loads  due  to  uniform pressure and asymmetric loading ob- 
tained in the  present  investigation. 

The asymmetric  dynamic  response  described above was obtained  with  a 
Fortran  program on the CDC 6600. In the h = 4 and 6 cases one iteration re- 
quired  approximately 0.8 seconds of computer  time, and in  the A = 8 case, 3.2 
seconds.  After  the  starting  iterate  at  each  time  step  was  extrapolated  using (42) , 
only  one iteration of Newton's procedure was generally  required  for  a  solution 
norm  accurate  to 1%. Thus,  the  remarkable  feature of this computation pro- 
cedure is its  speed.  Computer  time  required  for  large  deflection,  nonlinear 
response  appears  to be of the  same  order of magnitude as  that needed for  linear 

response. 

In several  instances Newton's procedure  failed to  converge (see  curves 
marked by a cross  in  Figures 17,  21, and 24). This usually  occurred  abruptly 
without  a gradual build-up of the  number of iterations  required  for  convergence. 
In all  calculations  five  iterations  were allowed  to achieve  a converged  solution. 
The  convergence failure of h = 4, p = 0.4, T* = 00 (see  Figure 17) was  investigated 
in some  detail. It  was found that  at the  point of failure  the  corrections  to  the  solu- 
tion decreased in the first  few iterations but then increased  rapidly  resulting  in  a 
diverging  solution. Adding one  fifth of the  correction to  the  solution  also  resulted 
in  convergence  failure  at  the  same point  in time. Changing the  time  increment  to 
0.05,  0.2 and 0.5 and starting with the  extrapolated  iterate  also  resulted in con- 
vergence  failure  at  the  same  time  as shown in Figure 16. However using  a  time 
increment of AT = 0.5, starting with  the  extrapolated  iterate  at  all  time  steps 
and, after  convergence  failure,  restarting with the  solution  at  the last time  step, 
a converged  solution  was  obtained  in  this  case. In this  manner,  the  solution could 
be  continued  in several  other  cases but in many cases  this  approach  also  failed. 
Thus, it appears that in  some  instances  the  convergence of Newton's procedure 
is very  sensitive  to  the  starting  iterate. The  underlying  causes of these  conver- 
gence  failures  should  be  more thoroughly investigated so that  a  failure-free com- 
putation  procedure  can  be  designed. 
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CONCLUDING REMARKS 

A numerical  analysis and computer  program a r e  developed for  the com- 
putation of the  large  deflection  dynamic  response of simply  supported thin  shallow 

spherical  shells  subjected  to a class of spatially  asymmetric and timewise  step 
loadings. A variant of the  program  calculates  large  deflection  static  response 

and buckling loads.  The  numerical method  employs  timewise  finite  differences 

and two dimensional  spatial  finite  differences. The latter are derived  from  the 

relative  extremum of a definite  integral.  The  solution is marched out in  time 

by Houbolt's unconditionally stable  backwards  difference  formula. At  each  time 

step the  resulting  nonlinear boundary value  problem is solved by successive  linear- 
izations  using Newton's procedure.  The  linear  simultaneous  equations of each lin- 

earization are solved  recursively by an  extension of Potters method. Computation 

times are considered  reasonable  for all cases computed. 

For  shells with h = 4 and 8 the  asymmetry of the loading reduces  the  static 
buckling  loads  to 50% and 53% of the  corresponding  symmetric buckling loads for 

uniform pressure.  For h = 4 the  asymmetric  dynamic buckling  load of infinite 
duration is 84% of the  corresponding  static one. For load  durations  shorter than 
the  period of oscillation of the  shell (T * < 5) the dynamic buckling loads are  greater 

than the  satic  ones. 

For A = 6 and asymmetric loadings  with  durations of T * = 5 and 00, the dy- 

namic buckling loads are 0.395 and 0.235 respectively.  For A = 8, T * = 5, it is 
approximately 0.39.  
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Appendix 

Sub-matrices of the Linear Coefficient Matrix AL 

D (2 x 5) 
L, 0 

2 4  

(3 = 2N + 2) 

1 2  
" --Ax 2 

-3 -+Ax?- 4 

-P z 12- 1 2  3 
-@X - 2 

- - 3 0  3 0  3 o  - 8  4 - 
4 8 

3 
.4 
" 0 8 

" 0 3 3 
8 
" 0 
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b = Ax 2 (1 + 5) 
4 c = " 

A02 (l + 5) 
A x  2 

d = - -  
A0' 

1 
A04 

e = - - - -  

f = 2a 

g = f + e  
h = 2b 
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The size and structure of  the CL, m(m = 2 , 3 ,  . . . M) matrices  are the 

same  as those of  the CL, matrix. The elements follow for m = 2 , 3 .  . . M-1 

a = 3 m  1 +  1 4 + m 
( m A B  ) mAe2  4(m 2 - 1) 

b = m A x 2  (1 -t: 
m 2 l  At? 2 )  

4 c = -  
mAB ( l  +- m A0 2 l   2 )  

A x  2 

mAB 
d = -  

2 

1 
3 4  e =  

m A0 

f = 2a 

g = f + e  

h = 2b 

For m = M 

b = - MAX 1 2 1 
2 ('+ + M 2 2 2 )  A0 

1 

M3A04 
e =  

f = 2a 

g = f + e  

h = 2b 
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D (N x z) m = 1,2, . . . .. .M-1 L, m 

For m = 1 , 2  . . . . "2: 

b = - AX m +  2 (  f )  

d = -a 1 
2 

1 
2 e = - b  

37 



E (E x v) 
L, m = 1 , 2 , .  . . .M-2 

*L, m is a diagonal matrix with the following elements: 

1 
- 2  -a EL,rn, 1,l 

EL,rn,  2,2 

E ~ ,  m,  2n+lY2n+1 

- 

1 
2 - -a " 

= a  

- 
my 2n4-2 , 2n+2 - -a n = 1,2 , .  . . .N-1  

1 
EL, m y  2N+lY2N+1 - 2  - -a 

1 
EL, my 2N+2,2N+2 2 

- - - -a 

a = m + l  - 1 
4(m+ 1) 
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Sub-matrices of the  Load  Matrix FL 

- NpAx 4 
fl - 5 

m = 1 , 2 , .  . . . . M  

fn = 4pAx m 1 m 
- M + z  1 cos (n - 1) A 4   n = 2 , 3 , .  . . N 

fN+l = 2pAx4m (l + 
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Sub-matrices of the Nonlinear  Coefficient  Matrix A NL 

a =  - N# + - S  1 .  
0 2 1  

b = -  
NS2 

‘1 

z cO c o  l o  
Z ~ N Z ~ N  

- n n  + Zbo Zao 
1 a b  - i  1 

1 
“c 0 n 2 r $  

1 .. 
b = W  I 

n o - W l , n  A92 
” 

Wl,Il 

1 .. .. 
c = s 2 -  n 4A €J2 (W1,n + W1,N-n ) 
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'NL, 1 - 'NL, A + 'NL,B + 'NL,C 
- 

'NL,A (N x X) 

4 1  



'NL, B (N X G) 

- 1 
an 
" 

16A9 2 (4qO+' l ,n+%,n+l   +%,N-l-n+%,N-n)  
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'NL, c (3 x R) 

- 1 1 
a. - ~ $ 2 ,  + (- 4 4 , o  + 3%/2,  1/2 ) 
N N N N-l/2 

I t  + -w 3 '  
+ wl,O - 4 3/2,  1/2 

N N N N  N-lj2 

e = - - (W;, n-l 
A e2 

1 + - w' 3 -  
4 3/2,  n-1/2 n 

1 
fn - *2,n + 2 [- 8 * l , n + 3  (%/2,11-1/2 + '3/2,n+1/2 

- 

1 .. 3 .  
=1,2, .  . . N-1 

gn = W2,n-WO+- (2wi:n+ 2Wl,n + a Wj/2,n+l/2 
Ae2 

In the expressions  for a0  and bo the two level subscript and sign should be 
interpreted as follows.: to  obtain  the  equation for a o, drop  the lower level sign and 
subscript on all symbols;  for  aN  replace the  upper level subscript and sign by the 
lower level one. 

N N 
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The size and structure of the CNL, m(m = 2,3,. . . M) matrices  are the 
same as those of the C matrix. The elements for m = 2,3, . . . M-1 follow. 

NL, c 
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For m = M 



1 
m + -  ., - 2 

dn - 2mAB2  Wm+1/2,n-1/2 n =   1 , 2 , .  . .N 

1 m + -  2 * I  

fn = 2 (m+l) A 0  2 Wm+1/2,n-1/2 
n = 1 , 2 , .  . . N  

n = 1 , 2 ,  ... N-1 
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.. . 
The expressions  for W'?, W, W?, and in this appendix are different  from 

those  in  the text. With Z representing $or W, they are: 

Z 
II 

m, n - 'm+l m y  n + 'm-1, n 
- - 22 m =  2,3,. . . M-1 

'i', n - '2,n - 2 Z l , n  + ' 0  

MY n - - 3zM,n + 'M-l,n 

- n=O, 1,2, .  . .N 

Z - 

Z 
.. 

- - 
m, n 'my n+l m,n  m,n-1 - 2 2  + Z  n =  1 , 2 , .  . . N-1 

.. 
Z 

m, 0 = 2(Zm, 1 - zm,  o) m=l,2,. . . M  

.. 
Z 

m, N 
- 
- 2(zm,N-l - z  m,N ) 

1 
+m+1/2 , n+1/2 = (+my n + +my n+l + +m+l , n+l + +m+l , n> 

The following quantities  also  appear in expressions  for  matrix  elements: 

N-1 
'4 - % , o ~ ~ , o + % , N ~ ~ , N  

- 
+ n=l  $l,nW1,n 
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Sub-matrices of the Pseudo Load  Matrix FNL 

- N$J S +(- 1 - 1)s - - 1 
' 0 2  A0 2 4 *02 s5 

F ~ ~ ,  1 (1 x G) 

1 1 

m N  
f l , o  = -l) 2 0 s 2 + z 4 , 0  (W2,O -w0)+;*2,0 p 1 , o  - w  290 ) 

N N N N N 

n=1,2,. . . N-1 
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The size and structure of the F NL, m(m = 2,3, . . . M) matrices  are the 
same  as those of the FNL,l matrix. The elements for m = 2,3, . . . M-1 follow. 

- .  - 1  

N-1/2 N-1/2 1 

.. .. 
'rn-1,n W m-l,n+'m,n-l  W" m , n - 1 - 2 ' m , n w k , n + W m , n ) +  'm,n+l W" m,n+l  

n = 1 , 2 ,  ... N-1 
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For m = M 

1 
f l , O  = - Z " M - l , O  (wM,O - w M - l , O )  -!&d,O (3wM,0 

+ w M - l ,  0 
N N N N N N N 

1 

+ ?M,l wM,l - + (" $ b W 3 M - 1 / 2 ,  1 /2  ] 
N- 1 N - 1   N - l / 2  

1 ' 1  1 1 II * .  2 

f 2 , 0  = T W M , O  (wM,O + w M - l , O )  +a [-E w M , O w M , O  +; (";)(Wk-1/2,1/2 
N N N N N N 1 N - l / 2  
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Sub-matrices of the Dynamic Matrices A and FD 
D 

The  elements follow: 

- - 
'D, O,l, 1 

AD is a diagonal matrix with entries on the odd numbered  row  only.  It 
is partitioned  into  sub-matrices C (2 x 2), CD, m(R x w), (m = 1,2.  . . M) . 

D, 0 

x N Ax4 

'D,m, 1 ,1 
- - 

2N-1,2N-1 

2mAx 
AT 

4 
2 

m Ax 4 

A72 

FD is a column matrix  partitioned  into  sub-matrices F (lx 2), FD, DY 0 
(1 x z), (m = 1,2, . . . M). For k = 2 the  elements follow. 

2m Ax 4 
- - 

F ~ y  m A B  

0 ) k =  1 

k = l  m =1,2, . . .M 
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For k 2 3 
- 4W0,k-2 + W0,k-3 

0 

1 
2 (5wmy 0 , k-1 - 4wm, 0, k-2 + w  m ,  0,  k-3 ) 
- 

0 

5wm n k-,l - 4wm,  n,  k-2 + Wm,n,k-3  

0 

0 

52 



REFERENCES 

1. 

2. 

'3. 

4. 

5 .  

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

Huang, N. C. , Nxisymmetric Dynamic  Smp-through of Elastic Clamped 
Shallow Spherical ShellsYy1 University of California, San Diego, TR-7, 
February, 1968. 

Marguerre, K. , ?lZur Theorie der  gekrummten  Platte  grosser Formanderung:f 
Proceedings of the  Fifth  International  Congress of Applied  Mechanics, 1938. 

7 1  1 1  

Timoshenko, S .  P., and J. M. Gere , Theory of Elastic  Stability, McGraw- 
Hill Book Company, Inc. , New York, 1961 (Chapter 11). 

Thurston, G.A. , llNewtonys Method Applied to Problems  in  Nonlinear Me- 
chanics, J. Appl.  Mech. , 383-388,  (1965). 

Stein, M. , and Sanders, J. L., Jr. , "A Method for Deflection  Analysis of Thin 
Low-Aspect-Ratio  Wings, NACA TN-3640, 1956. 

Engeli, M. , T. Ginsburg, H. Rutishauser, E. Stiefel, "Refined Iterative 
Methods for Computation of the Solution and the Eigenvalyes of Self-Adjoint 
Boundary  Value Pr$blems, Mitteilung aus  dem  Instituf: fur angewandte 
Mathematik,  Birkhauser  Verlag,  Basel/Stuttgart, 1959. 

Schaeffer, M. G. , "The Direct  Determination of Nonlinear Displacements of 
Arbitrarily Supported Shallow Shelis  using  Mathematical  Programming 
Techniques, l 1  Ph. D. Thesis , Virginia  Polytechnic  Institute, Va. , April 1967. 

Houbolt, J. C. , Recurrence  Matrix Solution for the  Dynamic  Response of 
Elastic  Aircraft, J. Aero.  Sci. , Vol. 17, 540-550,  (1950). 

Johnson, D. E. , "A Proof of the  Stability of the Houbolt  Method;' PIMA J. , 
4(8),  1450-1451,  (1966). 

Potters , M. L. , "A Matrix Method for  the Solution of a Second. Order Dif- 
ference Equation in Two Variables, Math. Centrum  Report MR19, (1955). 

Schaeffer, H. G. , Tomputer  Program  for  Finite-Difference So1ution.s of 
Shells of Revolution  Under Asymmetric  Loads, If  NASA TN D-3926, (1967). 

Budiansky , B. , and  Radkowski, P. P. , llNumerical  Analysis of Unsym- 
metrical Bending of Shells of Revolution, ALGA J. , 1(8), 1833-1842, 
(1963). 

Weinitschke, H. , "On the  Stability  Problem  for Shallow Spherical  Shells, 
J. Math. and Phys., Vol. 38,  209-231,  (1960). 

Weinitschke, H. J. , Wn Asymmetric Buckling of Shallow Spherical  Shells, 
J. Math. and Phvs.. Vol. 44. 141-163.  (1965). 

53 



15. Budiansky, B. , and  Roth, R. S. , "Axisymmetric Dynamic Buckling of 
Clamped Shallow Spherical  Shells, 1 1  NASA TN D-1510,  597-606,  (1962). 

16.  Stephens, W. B. , and  Fulton, R. E. , lfAxisymmetric  Static  and Dynamic 
Buckling of Spherical  Caps Due to  Localized  Pressures,  to be presented 
at the A M ,  7th Aerospace  Sciences Meeting, New York,  January 20-22, 
1969. 

17. Hung, N. C. , 'Vnsymmetrical Buckling of Thin Shallow Spherical  Shells, I '  

J. Appl. Mech. , 447-457,  (1964). 

18. Budiansky, B. , "Buckling of Clamped Shallow Spherical  Shells,  Proceedings 
of the I. U. T. A. M. Symposium of the  Theory of Thin Elastic  Shells, I' North 
Holland Publishing Company, Amsterdam, 64-69,  (1960). 

19. Ball,  R. E. , "A Geometrically Nonlinear Analysis of Arbitrarily Loaded 
Shells of Revolution, NASA CR-909,  1968. 

20. Budiansky, B. ,  "Dynamic Buckling of Elastic  Structures: Criteria and 
Estimates, Dynamic Stability of Structures,  Pergamon  Press, New York, 
1966. 

54 



FIG. I: GEOMETRY, NOTATION, AND LOAD DISTRIBUTION 
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(THE i '§ ARE DEFINED BY EQUATIONS 19) 

FIG. 2: FINITE DIFFERENCE NET, ELEMENTAL AREAS AND LENGTH 
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